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How might the brain link environmental, social, behavioral, psychological, and biological 

factors to risk for and resistance against acute and chronic physical illnesses? Can understanding 

the roles of brain structure and function in physical health and disease across the lifespan guide 

new efforts to improve public health and individual wellbeing? Noninvasive neuroimaging 

methods to measure human brain structure and function afford ever-expanding opportunities to 

address these and other open questions in health psychology and related disciplines such as 

health neuroscience (Erickson et al., 2014; Inagaki, 2020). This chapter describes common 

neuroimaging methods to address basic and translational questions about the brain in the context 

of health psychology. It then presents interpretive heuristics derived from health neuroscience, 

offering empirical illustrations of studies that conceptualize the brain as a predictor, mediator, 

and outcome of health and illness processes across the lifespan. The chapter concludes with a 

perspective on new avenues for health neuroscience.  

Common Human Neuroscience Methods and Measures 

Structural and functional neuroimaging methods are among the most common 

neuroscience methods employed in psychology, but they have a shorter history of use in health 

psychology. Structural neuroimaging methods quantify the amount or volume of in vivo brain 

tissue, as well as other morphological features. The latter include measuring regional variation 

across the brain in the cortical surface area and thickness or tracing white matter tracts that 

comprise neural circuits and networks. These and other morphological features can exhibit 

plasticity throughout development and later life, especially in association with factors of interest 

to health psychologists (e.g., psychological stress, health behaviors, etc.). By contrast, functional 

neuroimaging methods assess changes in local hemodynamic and metabolic activity in the brain 

across behavioral and psychological states. Functional methods can also assess statistical 
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associations of hemodynamic and metabolic activity patterns across brain regions over time, 

thought to reflect inter-regional communication patterns of “functional connectivity.” The most 

common of these structural and functional neuroimaging methods are reviewed next. 

Structural Brain Imaging Methods and Measures  

Frequently used structural neuroimaging methods include structural magnetic resonance 

imaging (sMRI), diffusion-weighted imaging (DWI), and susceptibility-weighted imaging 

(SWI). Both sMRI and DWI are popular in health psychology, so we focus on those below, but 

SWI is of growing interest in studies of cerebrovascular health and psychosocial determinants of 

brain aging and dementia risk (Shaaban et al., 2019). 

Structural Magnetic Resonance Imaging. sMRI helps visualize and quantify in vivo 

brain anatomy and morphology, especially grey and white matter tissue. Grey matter is 

comprised of neuronal cell bodies, dendrites, axon terminals, and other non-myelinated parts of 

neurons. White matter is comprised of glial cells (e.g., oligodendrocytes) and their associated 

processes (e.g., myelin sheathing). In some cases, however, the appearance of certain types of 

white matter are signs of degenerative and inflammatory pathology (i.e., white matter hyper-

intensities). Using conventional sMRI, researchers can quantify global (whole-brain) and 

regional indices of the amount or density of tissue present, the surface area and thickness of the 

cortex, and the presence of tumors and abnormalities. Although structural measures can be 

derived manually, automated approaches are also widely used, e.g., automated segmentation 

methods for identifying different subfields in a given brain structure such as the hippocampus. In 

essence, MRI works by applying a combination of strong magnetic fields (measured in Tesla 

units such as 3T or 7T), magnetic field gradients, and radio waves to induce polarization in (most 

commonly) the brain’s hydrogen atoms (found in abundance in water and fat), in turn localizing 
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this polarization in 3D space. This method works because different types of tissues, fluids, and 

cells are differentially impacted by these gradients and radiofrequency pulses, allowing the 

imaging of particular tissue types (e.g., grey vs. white matter) or even neurophysiological 

parameters (e.g., blood flow). For more on MRI physics, see Martinez (2018), Plewes & 

Kucharczyk (2012). Ultimately, sMRI is a valuable technique for health psychology. For 

example, health psychologists might wish to examine how health behaviors (e.g., physical 

exercise, sleep) or health status (e.g., cardiovascular disease risks, systemic inflammation) may 

predict the magnitude of change in total brain volume. Other health psychologists might examine 

how chronic life stressors or early life adversity are associated with volumetric differences in 

brain structures or accelerated cortical thinning in later life. 

Diffusion-Weighted Imaging. DWI is an MRI acquisition technique that measures the 

diffusion of water molecules in the brain. To do so, it applies magnetic field gradients that are 

sensitized to a particular diffusion direction and repeats this process multiple times in multiple 

directions. In turn, diffusion tensor imaging (DTI) uses mathematical models to estimate the 

direction and magnitude of the water diffusion measured in DWI. DTI can thus be used to map 

the direction and structural properties of cellular components (e.g., myelin) in white matter tracts 

that connect brain areas. One application of DTI is tractography, “tracing” white matter fiber 

tract connections. Rather than relying on post-mortem examinations or tract-tracing injections, 

DTI tractography allows researchers to noninvasively map white matter connections within and 

between brain structures. Within DTI, streamline tractography is a typical method wherein the 

projection of a given tract or fiber pathway can be traced along the direction of fastest diffusion 

or throughput, often assessed with computational methods (e.g., algorithms) and expert user 

evaluation. This approach forms the basis of many tract-tracing studies, revealing the physical, 
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“wired” connections between white matter structures. See O’Donnell & Westin (2011) and Tian 

et al. (2020). While sMRI provides insight into the volume and thickness of brain structures, 

DWI methods offer a rich picture of the brain’s structural interconnections (i.e., white matter 

structural connectivity). Structural connectivity is important because it reveals the neuronal 

architecture likely underpinning the brain’s functional connectivity, or how different brain 

regions work together in functional networks. Structural connectivity is sensitive to development 

and experience, creating meaningful between-person variation in how different brain structures 

are wired together (e.g., Hagmann et al., 2010; Teicher et al., 2016). Similar to sMRI, DWI can 

be used in health psychology to understand the importance of health behaviors, health status, 

developmental environment (e.g., pollution, early life adversity), and life experiences (e.g., 

trauma, chronic stressors) for brain health outcomes such as the density of connections across the 

whole brain or between regions, as well as axonal degradation due to aging or pathology.  

Functional Brain Imaging Methods and Measures 

Common functional methods include functional magnetic resonance imaging (fMRI), 

positron emission tomography (PET), perfusion imaging using arterial spin labeling (ASL), 

functional near infrared spectroscopy (fNIRS), and magnetoencephalography (MEG). At present, 

fMRI and PET are popular functional neuroimaging methods, so we focus on these methods.  

Functional Magnetic Resonance Imaging. fMRI provides an indirect, in vivo measure 

of local neuronal activity. Increased neuronal activity produces a local hemodynamic response 

that captures shifts in the ratio of oxygenated to deoxygenated hemoglobin, known as the blood 

oxygen level-dependent (BOLD) signal. MRI can capture the magnitude of the BOLD signal 

because oxygenated and deoxygenated hemoglobin have different magnetic properties. 

Importantly, changes in the BOLD signal indirectly correspond to neuronal activity (Logothetis, 
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2002). Furthermore, this signal is slightly lagged, beginning 1-3 seconds after neuronal activity, 

peaking 6 seconds after, and decaying after 20-25 seconds. As such, fMRI affords good spatial 

resolution of anatomy (e.g., on the order of millimeters or sub-millimeter), but has relatively 

poor temporal resolution relative to electrophysiological methods that can detect neural changes 

on the order of milliseconds (but see Jung et al., 2021). For fuller introductions, see Huettel et al. 

(2014) and Wager & Lindquist (2015). By far, fMRI is the most popular functional 

neuroimaging technique used in health psychology. For instance, it has been used to identify the 

functional brain regions and networks involved in health status, motivations, and behaviors (e.g., 

the neural correlates of cardiovascular risk, systemic inflammation, and appetite, e.g., Althubeati 

et al., 2022; Ginty et al., 2017; Kraynak et al., 2018). Similarly, other fMRI studies examine 

longitudinal and cross-sectional relations between physical or psychosocial environments (e.g., 

food insecurity, childhood maltreatment) with brain function, with the hypothesis that brain 

function mediates environmental effects on physical and mental health, cognitive development 

and aging, and psychosocial adjustment (e.g., Čermaková et al., 2022; Chu et al., 2019).  

Positron Emission Tomography. PET can assess regional brain metabolic processes in 

healthy and diseased states. Cerebral blood flow (CBF) and glucose metabolism are among the 

most common phenomena studied with PET (Paulson et al., 2010). Radiolabeled tracers are 

injected, and these tracers elicit gamma rays that the PET scanner detects and localizes to 

quantify regional changes in blood flow, metabolic activity, and the composition and absorption 

of biochemicals such as neurotransmitters. Common positron emitting radioisotopes used include 

18F (fluoride), 11C (carbon), and 15O (oxygen). For example, PET with fluorodeoxyglucose 

(FDG-PET) tracks regional glucose metabolism, which is closely linked to neuronal activity 

(Barros et al., 2005). Thus, FDG-PET can indirectly measure neuronal activity at rest and during 
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different behavioral states. Similarly, 15O-PET can measure blood flow, enabling researchers to 

identify areas of ischemia, tumor presence, and neurodegeneration. Development of radiotracers 

or ligands for biochemicals and their receptors continues to accelerate PET work on physical and 

mental health, such as tracing dopamine metabolism in studies of reward and addiction or 

amyloid plaque accumulation in studies of dementia and aging (Hatano et al., 2006; Klunk et al., 

2004). PET can also be used to examine amino acid transport, protein synthesis, and regional pH 

levels using ligands such as DL-tryptophan, L-glutamate, L-leucine, and 11C-DMO.  For more, 

see Heurling et al. (2017) and Hooker & Carlson (2019). While PET may be less frequently used 

in health psychology relative to fMRI, it is still an invaluable tool for questions that cannot be as 

easily examined with fMRI. For example, health neuroscientists may wish to trace specific 

neurotransmitter functions or aspects of brain metabolism, as relevant for studies of 

cardiovascular health, appetite, addiction, pain, psychological stress, depression, and dementia.  

Methodological Considerations for Design and Analysis  

Although the above neuroimaging methods offer health neuroscientists a diverse toolkit, 

each method brings its own set of limitations and considerations for study design, analysis, and 

conceptual inference. Special consideration should always be given to matching the questions at 

hand to the method and metrics used, as well as to method-specific inferential limitations. We 

next discuss these method-specific considerations for design, analysis, and interpretation. 

Structural Imaging Design. In addition to sMRI’s excellent spatial resolution, this 

method affords two other benefits: (1) MRI scanners are available at many research universities 

and medical campuses, and (2) sMRI is amenable to repeated administration in the context of 

longitudinal and intervention studies. However, there are several caveats that MRI researchers 

should consider; furthermore, because DWI is based upon MRI, it shares many of these issues.   
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First, although there are no known health risks of MRI, the strong magnetic field can 

induce ectopic heartbeats and other abnormal heart rhythms, and higher magnetic fields of 7T or 

10T can induce vertigo and nausea in some individuals. Due to the strong magnetic field, all 

participants, researchers, and technologists must follow intensive safety protocols to ensure that 

ferromagnetic metals are kept away from the MRI scanner. Separately, because participants are 

placed in the narrow bore of the MRI scanner, individuals who are prone to claustrophobia may 

not be able to participate. Indeed, some individuals find the MRI experience to be stressful, 

potentially confounding research (Muehlhan et al., 2011). All known sMRI and DWI signals are 

sensitive to noise induced by subtle head movements (i.e., motion artifacts) and to systematic 

variation induced by breathing, the pulse, etc. These artifacts may be further exacerbated in 

specific research populations. For instance, it can be difficult for young children or adults with 

Parkinson’s to remain still, leading to special considerations when including these populations. 

Finally, between-person variations in brain anatomy—whether due to naturally occurring 

individual differences, developmental stages, aging, or even the presence of lesions or 

pathology—make between-person structural comparisons challenging. See Eliot et al. (2021), 

Gray et al. (2009), and Mulcahy et al. (2019). 

Functional Imaging Design. As reviewed above, structural neuroimaging generates 

measures of brain structure that can be examined as correlates, predictors, or outcomes of health-

related processes. However, health neuroscientists are often interested in psychological processes 

and their underlying neurobiological substrates that contribute to health and disease states; as 

such, they tend to rely more upon methods like fMRI and PET. Given that fMRI builds upon 

MRI, fMRI is similarly susceptible to motion artifacts, but this is more problematic for fMRI 

because scans tend to be longer. Motion can also become confounded with task features or task 
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types (e.g., if a task induces startle). To minimize motion artifacts, fMRI tasks are designed to 

limit movement, with responses given on a hand-held button box. Another challenge is how best 

to adapt common behavioral paradigms used in health psychology, such as a psychosocial stress 

tasks, for in-scanner use in a way that minimizes motion artifacts while maintaining ecological 

validity. Similarly, fMRI users must consider how best to titrate task duration and stimulus onset 

to the temporal dynamics of the BOLD signal (which, as noted earlier, begins 1-3 seconds after 

neuronal activity and decays after 20-25 seconds). Nonetheless, even in the best-case scenarios, 

artifacts and outliers are bound to occur in the BOLD signal timeseries, but their influence can be 

reduced using signal preprocessing tools, censoring, and covariates (Huettel et al., 2014).  

Relative to fMRI, PET offers diverse measures of neuronal and metabolic activity, but it 

is more expensive, invasive, and less widely available than fMRI. Similarly, while the temporal 

resolution of fMRI is on the scale of seconds, the temporal resolution of PET is longer (>1-2 

minutes). Other disadvantages are that PET requires a cyclotron and physicists who maintain and 

oversee advanced instrumentation. Furthermore, the radioactive materials and ligands used in 

PET can only be given safely a few times to the same individual before it becomes unsafe, unlike 

fMRI wherein there are no known risks to repeated assessments. Yet PET is less susceptible to 

motion artifacts and can be more readily combined with psychophysiology, phlebotomy, and 

neuroendocrine assays, enabling health research that might be impractical with fMRI.  

Experimental Design. Although functional neuroimaging is promising for psychological 

and behavioral questions, several issues should be considered when designing experimental tasks 

and conducting statistical analyses. Task-based approaches typically compare relative levels of 

brain activity between two or more experimental conditions (e.g., receiving social support from a 

friend vs. a stranger). Within fMRI, there are two broad task-based approaches, which can 
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sometimes be combined: blocked and event-related designs. A blocked design administers task 

conditions (e.g., images of high calorie vs. low calorie food) as separate blocks to maximize the 

time for a robust BOLD response to develop in each condition. Here, for example, an 

experimenter might administer a block of 10 trials in row in which participants see high calorie 

foods (e.g., for 30 seconds), alternating with a separate block of 10 trials with low-calorie foods 

(e.g., for 30 seconds). Event-related designs instead interleave stimuli in a stochastic trial-by-trial 

manner, supporting tasks wherein it is important to analyze neuronal responses during individual 

trials. Thus, the experimenter can vary (i.e., randomize) the stimulus type on a trial-by-trial basis. 

While fMRI supports both blocked and event-related designs, PET works best with a blocked 

design given its slower temporal resolution. There is also growing interest in resting state 

paradigms to explicate the ongoing magnitude and organization of functional brain activity in 

the absence of an ongoing behavioral task (Damoiseaux et al., 2006). These paradigms are 

thought to tap into trait-like phenotypes of brain function (Vaidya & Gordon, 2013), which may 

then be related to individual differences relevant for physical health and health psychology.  

Neuroimaging Analysis. There are two general classes of analytical approaches to 

quantify functional and structural measures: mass-univariate vs. multivariate models. By far the 

most frequent, mass-univariate approaches often use the general linear model (GLM) framework 

(Monti, 2011). With GLM, researchers can model within-participant (and for functional imaging, 

within-task) effects by specifying different levels of analysis that reflect scans within individuals 

(if there are multiple scans), individual-level effects, and group-level effects, accounting for data 

interdependencies. Here, the goal is to determine whether a given model predictor or condition is 

associated with observed variability across voxel timeseries. Yet functional methods capture 

several hundred or thousand variables that often exhibit moderate to high levels of 
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multicollinearity. Moreover, individual variables are likely noisy and unstable, potentially 

elevating false positive rates. To this end, dimensionality reduction approaches (e.g., PCA, ICA) 

derive latent factors of brain structure or function, while advanced classification and regression 

approaches use cross-validation to identify brain features that reliably classify or predict 

outcomes (Calhoun et al., 2017; Davatzikos, 2019; Woo et al., 2017).  

Regional vs. Whole-Brain Analysis. In addition to the above design and analysis 

considerations, neuroimagers face two choices that impact their design and analysis approaches. 

First, neuroimagers must decide whether they will take a regional vs. whole-brain approach or 

some combination of both and, second, whether they will focus on functional activation vs. 

connectivity metrics or both. In working with structural measures, researchers often are 

interested in the volume or integrity of a specific structure (e.g., hippocampus) or the density and 

integrity of structural connections (e.g., white matter tracts) between regions. Similarly, 

functional measures can focus on regions-of-interest (ROIs) or examine voxel-wise signals 

across the whole brain. An ROI approach offers two advantages (Poldrack, 2007). First, when 

there are strong theoretical justifications to examine specific regions, ROIs serve as principled, a 

priori tests of region-specific hypotheses. ROI approaches also reduce the number of statistical 

tests, minimizing Type-I errors. Yet ROI approaches are less frequently used today due to the 

recognition that behavioral and psychological functions are not localized to specific regions but 

instead likely emerge from the context-dependent and distributed co-action of multiple regions or 

functional networks (Yeo et al., 2011). As such, focusing only on ROIs may lead literatures to 

develop fragmented, inaccurate summaries of how neural processes link to behaviors and states.  

A whole-brain approach arguably provides a more comprehensive account of brain 

structure and function (Kragel et al., 2018; Petersen & Sporns, 2015). When combined with 
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replication and cross-validation methods, whole-brain approaches also provide stronger tests of 

the specificity of effects, examining the whole population of a given individual’s voxels and 

showing which regions and systems consistently or reliably relate to the processes of interest. 

Measuring single voxels across any imaging method can be inherently unreliable, but 

aggregating signals across voxels within regions and across the brain improves reliability and the 

signal-to-noise ratio. As such, although both ROI and whole-brain approaches aggregate signals 

across voxels, a whole-brain approach provides greater reliability and signal-to-noise ratio than 

the ROI approach. The cost to whole-brain approaches is that because statistical tests are 

performed on every voxel, whole-brain analyses are susceptible to inflated Type-I error rates 

(i.e., false positives). This concern can be somewhat (although not totally) ameliorated by 

combining statistical thresholds at each voxel with spatial (e.g., cluster-extent) thresholds across 

voxels (e.g., using random field theory). For example, to minimize the risk of false positive 

errors, whole-brain analyses typically apply a statistical correction for multiple comparisons, 

such as the Benjamini-Hochberg correction for False Discovery Rate (FDR) or the Bonferroni 

correction for Family Wise Error (FWE). Because whole-brain functional neuroimaging tests 

effects on hundreds of thousands of voxels simultaneously, such corrections are critical relative 

to other methods and measurement modalities used in health psychology and neuroscience. 

Activation vs. Connectivity. Functional neuroimaging can assess either activation or 

connectivity. Functional activation (or, conversely, deactivation) reflect changes in brain activity 

(e.g., percent change in BOLD signal or CBF) observed between given conditions (e.g., a 

stressor condition > control condition with a fixation cross), known as a contrast. Importantly, 

“activation” and “deactivation” are artificial terms that are relative to their comparisons (e.g., 

there was greater activation in the insula, amygdala, and anterior cingulate in the stress condition 
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relative to control); these terms do not necessarily mean that neurons are more vs. less 

neurophysiologically active or that neurons are turning “on” vs. “off” (Singh, 2012). 

Given growing interests in distributed networks across the brain, neuroimagers are 

increasingly using metrics of functional connectivity between given ROIs or across multivariate 

whole-brain patterns. Functional connectivity tests associations between two or more co-

occurring voxel time series either at rest, during a task, or during a manipulated behavioral state. 

Functional connectivity can be model-based or data-driven and undirected or directed. Model-

based approaches test a hypothesized set of functional connections (e.g., dynamic causal 

modeling), whereas data-driven approaches identify patterns and regions that covary together 

over time (e.g., independent component analysis). Undirected connectivity estimates the 

covariation of timeseries between regions or voxels; the simplest approach to estimate undirected 

connectivity involves calculating the Pearson correlation coefficient between two timeseries for 

specific brain regions. For example, a health neuroscientist might examine how brain regions co-

activate together in time in response to painful stimuli. On the other hand, directed connectivity, 

also termed effective connectivity, uses principles such as Granger causality to infer the temporal 

ordering of regional activations. Directed connectivity methods and related automated search 

algorithms rely on techniques such as auto-regressive models which have a long history of 

quantitative development for other types of intensive timeseries data (Henry & Gates, 2017). A 

health neuroscience application of directed connectivity might examine how neural activity in 

one brain region during painful stimulation might propagate to additional brain regions. Other 

undirected and directed methods test connectivity changes over time or between experimental 

conditions (e.g., dynamic functional connectivity, psychophysiological interaction analyses). See 

Bullmore & Sporns (2009) and Meier et al. (2016).  
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Broader Neuroimaging Caveats and Pitfalls  

 Health psychologists who wish to study the brain have many options in terms of modality 

(structural vs. functional), design (resting state vs. task-based), domains (ROI vs. whole-brain; 

regions vs. networks), and analytic strategies (mass-univariate vs. multivariate). Generally, the 

field of neuroimaging is moving away from ROI-based, mass-univariate approaches and toward 

whole-brain, multivariate, and network-based approaches. Innovations in statistical methods and 

computing platforms make these changes increasingly feasible. Ultimately, researchers’ 

decisions depend upon the available equipment and research question at hand. However, there 

are broader caveats and pitfalls that health neuroscientists should consider, including 

confounders and biological constraints or issues with sample size, generalizability, reliability, 

and replicability, etc. We close this section by highlighting some of these caveats and pitfalls. 

Confounders and Biological Constraints. As in health psychology and behavioral 

medicine, there are important biological confounds and constraints to consider, which are also 

relevant in neuroimaging. For example, the BOLD signal can vary according to metabolic state, 

recent sleep, and age (Fukunaga et al., 2008; Grady & Garrett, 2014; Iacovella & Hasson, 2011). 

These confounds add additional considerations in health neuroscience studies, to ensure that 

brain metrics are varying due to the task, question, or populations of interest, rather than due to 

extraneous state or trait factors. Biological confounders are also not just problematic in 

functional but also structural approaches like DTI wherein factors such as time of day or recent 

water intake can correlate with brain-derived metrics (e.g., Thomas et al., 2018).   

 Sample Size, Generalizability, Reliability, and Replicability. Given that neuroimaging 

studies are expensive, studies have historically used small convenience samples, e.g., 

undergraduate students (Marek et al., 2022). Studies are increasingly encouraged to recruit more 
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representative, diverse samples through methods such as stratified sampling, oversampling 

under-represented groups, and multi-site collaborations. Relatedly, recent reviews have raised 

important issues around the lack of robustness and reliability of neuroimaging findings, 

especially when linked to self-report, behavior, or individual differences as would be commonly 

examined in health neuroscience (Bossier et al., 2020; Elliott et al., 2020; Kragel et al., 2021).  

As such, careful methodological and psychometric work is needed to determine whether 

functional neuroimaging tasks reliably elicit activity in hypothesized brain regions and across 

hypothesized brain networks. New tasks or adapted tasks should be piloted first in the scanner to 

examine how the scanner environment and constraints may alter the reliability and ecological 

validity of the task. Neural activity in response to the same task can also vary across multiple 

sessions, which may in part be driven by other biological or psychological confounds (e.g., 

physiological state, practice effects, etc.). This latter point can be especially problematic for 

longitudinal or repeated measure brain imaging studies.  

Inferential Pitfalls. It is easy to incorporate neuroimaging methods into a study or grant, 

but much more difficult to analyze and interpret what results mean. Here, there are two well-

known inferential pitfalls to avoid. First, in traditional GLM approaches to fMRI or PET, 

condition differences (contrasts) are examined by creating a group average of the brain map and 

neural activity therein. However, this can lead to Simpson’s paradox, wherein the regions of 

functional activity or connectivity extracted may not reflect activity in any one individual brain 

(Roberts et al., 2016). Mixed effects and hierarchical approaches (e.g., nesting individual-level 

brain maps within a group-level brain map) can help minimize this.   

Another inferential pitfall is describing neuroimaging results in unwarranted causal 

language. A large majority of structural and functional studies in health neuroscience are cross-
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sectional, correlational studies interested in identifying how individual differences in brain 

structure or function relate to individual differences in physiological, mental, behavioral, or 

environmental factors. However, it is not uncommon to see researchers use causal language, 

discussing the “neural mechanisms” of a phenomenon or providing overly strong inferences 

about the direction of causality between variables that are only statistically correlated. Relatedly, 

reverse inferences are logical fallacies that have long been noted as problematic (Sarter et al., 

1996), but continue to occur (Poldrack, 2011). For illustration, reverse inferences occur when 

researchers conclude that because they found amygdala activity in response to their study’s task 

and given prior work implicating the amygdala in negative emotion, this must mean that 

participants were feeling negative emotion during the task. Reverse inference issues can also 

extend to functional networks, where nomenclature such as the “reward network,” “salience 

network,” or “executive control network” may lead researchers to reify and infer psychological 

processes only from the observed brain imaging data itself. Yet interpretive caution is critical, 

given that there are many reasons why activity in a brain region or network could be observed. 

Ultimately, human neuroimaging brings unique challenges but when understood, applied, 

and interpreted carefully, it can add value to health psychology by revealing biological, 

psychological, and environmental pathways in health and disease. To do this, health 

neuroscientists may start with a health-related factor of interest (e.g., psychosocial support) and 

consider which pathways and measures might be most biologically plausible, as discussed next. 

The Brain as Predictor, Outcome, and Mediator of Physical Health and Illness 

 Health neuroscience provides a conceptual framework for designing and interpreting 

research studies, as well as developing applications that rely on brain imaging measures as 

relevant for health-focused inquiries. Within this perspective, the brain is a central organ for 
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health and disease, wherein the determinants, concomitants, and consequences of health are tied 

to lifelong, bidirectional, dynamic interactions between brain and body, brain and environment, 

and brain and behavior (Erickson et al., 2014; McEwen & Gianaros, 2010). Given the 

complexity of pathways linking the brain to health, a programmatic approach to health 

neuroscience involves systematically examining the brain as a predictor, outcome, and mediator 

of physical health and illness. To help illustrate this, we next discuss how health neuroscience 

studies have examined the brain as a health predictor, outcome, or mediator (see Figure).  

Brain as a Predictor of Health and Disease Outcomes 

 One central hypothesis in health neuroscience is that the brain is an important predictor 

of health and disease outcomes. Thus, much work in health neuroscience seeks to verify, 

describe, and explain the pathways by which brain structure and function promote downstream 

health-relevant biological, psychological, and behavioral factors. In these studies, the brain is 

often examined as a conceptual predictor (as in cross-sectional studies) or a causal predictor (as 

in longitudinal or experimental studies).  

 Brain as Conceptual Predictor. Before employing expensive longitudinal studies, 

experimental manipulations (e.g., temporarily blocking certain neural receptors), or rare patient 

samples (e.g., where there is brain abnormality or damage), one important starting point is to 

examine the brain as a correlate or cross-sectional conceptual “predictor” of the health-relevant 

factor of interest. Many such studies focus on identifying individual differences in brain structure 

or function and then using these as correlates of health status, health behaviors, or psychosocial 

functions. The underlying assumption here is that these individual differences may explain 

variability in a given health outcome. For example, individual differences in neural activity 

evoked by stressful or negative emotional tasks can predict aspects of cardiovascular risk 
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(Gianaros et al., 2014, 2017, 2020). Specifically, different patterns of neural responses to 

stressful cognitive tasks (e.g., time-pressured Stroop task) and negative emotional images were 

linked to cardiovascular risk factors such as larger stress-related blood pressure reactions, 

systemic inflammation, and worse preclinical atherosclerosis, as measured by carotid artery 

intima-media thickness. Ultimately, cross-sectional studies that consider the brain as a 

conceptual predictor provide a useful starting point for a programmatic health neuroscience. 

These studies provide first steps in establishing specific neural patterns and pathways of structure 

and function that would be important to target in experimental or longitudinal approaches. 

However, these studies do not test their underlying causal assumption of brain as predictor.  

 Brain as Causal Predictor. One way to assess the brain as a causal predictor is to use 

longitudinal and quasi-longitudinal studies wherein researchers track brain structure or function 

links with health or related psychosocial or behavioral factors over time. For example, studies 

have examined the extent to which neural responses to persuasive health messages associates 

with future smoking reduction and cessation (Falk et al., 2010, 2011), how neural reactivity to 

rewarding stimuli and markers of brain structure associates with future weight and health 

behaviors (Demos et al., 2012; Yokum et al., 2012), and how individual differences in neural 

reactivity to threat associates with later reactions to life stress up to four years later (Swartz et al., 

2015). Within the context of early life health development, studies show associations between 

parental brain function and children’s later health outcomes and stress-related reactivity 

(Abraham et al., 2018). Other work demonstrates that structural measures of brain aging predict 

mortality risk (Cole et al., 2018), that stress-related amygdala activity predicts future clinical 

cardiovascular events above-and-beyond conventional risk factors (Tawakol et al., 2017), and 
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that regional brain activity during a cognitive stressor can predict the 2-yr longitudinal change in 

clinic blood pressure and cardiometabolic risk (Allen et al., 2020; Jennings et al., 2017). 

 Other ways to examine the brain as a causal predictor are to use experimental 

manipulations that temporarily alter brain function or to examine special patient populations 

where brain structures are degenerating, diseased, or damaged. For example, transcranial 

magnetic stimulation (TMS) is a type of noninvasive brain stimulation that allows researchers to 

stimulate neurons within a local brain region with magnetic fields. In health neuroscience, TMS 

has been used to identify and intervene on the neural correlates of addiction, with some success 

at reducing the use of substances such as cigarettes and cocaine (Gorelick et al., 2014). TMS can 

also examine cerebral cortical circuits that regulate peripheral physiology relevant to health 

(Makovac et al., 2017). Another common manipulation approach is to use a pharmacological 

agent to blockade a specific kind of receptor in the brain, such as beta-adrenergic receptors. 

Depending on the receptors of interest, sometimes pharmacological blockades can capitalize on 

the fact that certain chemicals cannot cross the blood-brain barrier, providing greater specificity 

in which receptors are blockaded. For example, nadolol is a beta-adrenergic receptor blockade 

that targets receptors primarily in the peripheral nervous system whereas propranolol acts on 

both central and peripheral nervous system receptors. By combining different blockades with 

functional neuroimaging (e.g., fMRI), researchers can pinpoint how signaling via a given kind of 

receptor in the brain causally impacts health-related biological, psychosocial, and behavioral 

factors. For example, to disentangle peripheral vs. central nervous system noradrenergic 

pathways in cardiovascular responses to acute stress, researchers could administer nadolol vs. 

propranolol vs. placebo in a double-blinded randomized control trial and then measure how 

cardiovascular stress reactivity and related neural activity in visceromotor regions that regulate 
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cardiovascular function might differ by drug administration. 

Finally, studies with special patient populations where specific brain structures are 

impacted provide another critical avenue for understanding how the brain may causally relate to 

psychosocial function, behavior, and physical health (Ahmed et al., 2018; Buchanan et al., 2010). 

These studies often examine individuals suffering from neurodegenerative diseases (e.g., 

Alzheimer’s disease, frontotemporal dementia), traumatic brain injuries, or damage due to 

lesions and tumors relative to healthy controls. One caveat is that there are complex interplays 

between health status, health behaviors, and environmental factors prior to the disease, injury, or 

damage which may be confounded with post-disease, injury, or damage effects.  

Brain as Outcome and Mediator Bridging Environment and Health, Mind and Body 

Another central theme in health neuroscience is that environmental influences, health or 

disease processes, and their interactions across the lifespan can alter brain structure and function. 

This hypothesis is affirmed across many cross-sectional and longitudinal studies, such as those 

examining how individual and developmental differences in brain morphology can be explained 

by chronic systemic inflammation, adiposity, adverse or isolating social environments, lifestyle 

habits (e.g., diet, exercise), environmental pollution, etc. (de Prado Bert et al., 2018; Gianaros et 

al., 2007; Layden et al., 2017; Muscatell, 2018). The health of other bodily systems, such as 

cardiovascular function and fitness, can also impact brain function and fitness. As an example, 

atherosclerosis impairs brain perfusion, whereas a lifestyle that promotes cardiorespiratory 

fitness is neuroprotective, especially as evidenced in mid and late life (Hillman et al., 2008; Li et 

al., 2019). Looking at the brain as a health outcome can also occur in a mediational context, such 

as studies wherein neighborhood disadvantage and racial residential segregation predict brain 
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morphology via intermediate biological and behavioral pathways (Gianaros et al., 2015; Hunt et 

al., 2020; Pohl et al., 2021; Zeki Al Hazzouri et al., 2022).  

Recognizing that the brain is a target of health and disease leads to the recognition that 

the brain can also serve as an important mediator or pathway by which health and physiology 

shape the mind and behavior, and vice versa, wherein the brain transduces environmental signals 

and subjective states into tangible health consequences and processes (Hall et al., 2018; Miller et 

al., 2009). For example, structural imaging has examined the brain morphology mediating the 

association between systemic inflammation and cognitive function (Marsland et al., 2015) or as 

linking health intervention effects to cognitive benefits (Bherer et al., 2013). Similarly, 

functional neuroimaging has revealed the brain as a mediator between health messaging to 

behavior change (Cooper et al., 2019) and between social threat and psychological or 

physiological processes such as working memory, anxiety, or cardiovascular reactivity 

(Eisenbarth et al., 2016; Slavich & Irwin, 2014; van Ast et al., 2014). Beyond these examples, 

there are three ways that prior work has examined the brain as a mediator in health neuroscience.  

 Objective and Subjective Environments Impact the Brain and Health. Some theories 

argue that the brain makes predictions about what environmental events mean for the organism, 

in turn orchestrating physiological, psychological, and behavioral responses that shape 

downstream health and disease (e.g., McEwen & Stellar, 1993). Thus, both objective and 

subjective facets of the environment can shape health and wellbeing, with the brain as a 

“biological embedder” of environmental effects. For example, the environments that individuals 

inhabit vary along several objective factors: air, water, soil, and noise pollution; local weather 

patterns; population density; access to occupational and educational opportunities, affordable 

housing, healthcare and healthcare messaging, healthy foods, and health-promoting recreational 
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activities; as well as ongoing life circumstances such as managing a disease or facing 

discrimination (e.g., Brosso et al., 2021). These objective factors often coalesce together based 

on individuals’ levels of socioeconomic advantage vs. disadvantage and majority vs. minority 

status, thus perpetuating chronic stressors and health disparities that accumulate as individuals 

age within their communities and social strata (Adler & Newman, 2002; Steptoe & Zaninotto, 

2020). Similarly, subjective facets of the environment matter, including perceptions of social 

support and belonging vs. perceptions of social isolation or exclusion, perceptions of relative 

inequality and scarcity vs. equality and abundance (i.e., subjective social status), as well as 

appraisals of life stressors (Cohen, Murphy, & Prather, 2019; McEwen & Gianaros, 2010). For 

example, much work shows that the brain mediates social status and support effects on immune 

responses to acute social stress (Gianaros & Wager, 2015; Inagaki, 2018; Muscatell, Dedovic, et 

al., 2016). Other examples include ongoing research targeting how environmental pollution (e.g., 

air quality) over time negatively impacts brain function, leading to downstream cognitive 

declines and accelerated aging (de Prado Bert et al., 2018; Zhang et al., 2018).  

Physiology and Health Matter for Psychology and Behavior via the Brain.  Another 

large literature examines how underlying health, disease, and physiological processes can, via 

the brain, shape important psychological or behavioral outcomes such as psychological stress, 

mental health, cognitive functioning, and health-related decisions. This work can be divided into 

(1) longitudinal studies examining chronic or trait-level health and disease indicators and (2) 

experimental studies that manipulate a physiological system or pathway. Both types of studies 

can provide powerful demonstrations of the brain’s role as mediator between the healthy vs. 

diseased body and behavioral functioning. Some exemplar studies include work examining brain 

morphology (e.g., cortical gray matter volume) as a mediator linking the association between 
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systemic inflammation and blood pressure to cognitive functioning across mid and late life 

(Marsland et al., 2015; Swan et al., 1998), which suggests that systemic inflammation may over 

time lead to grey matter shrinkage, which is associated with worse cognitive aging. Other 

exemplar studies examine how neural activity in regions such as the insula link acute and chronic 

inflammation to sickness behaviors and social affective outcomes such as social withdrawal and 

depression (Lekander et al., 2016; Muscatell, Moieni, et al., 2016; Slavich et al., 2010).  

Brain as Mediator of Health: Sickness Behaviors and Perceptions. A more direct way 

to understand the brain’s role as a mediator is to examine how the brain gives rise to 

interoception, which broadly includes the generation and perception of bodily states and 

sensations (Craig, 2003; Quigley et al., 2021). As such, interoception is likely foundational for 

many aspects of health and wellbeing, such as mental health, stress management, risk-taking, 

health motivation, and behavior change (Khalsa et al., 2018; Tsakiris & De Preester, 2018). 

Similarly, interoception appears to shift with age and disease status such as hypertensive heart 

disease (e.g., Bonaz et al., 2021; Khalsa et al., 2009; MacCormack, Henry, et al., 2021), 

suggesting that biological aging and disease-related pathophysiology can influence physiological 

and neural pathways supporting interoception. Understanding the role of the interoceptive brain 

as an outcome and mediator in physical and mental health, stress, disease, and aging is an 

important new direction for health neuroscience.   

Future Directions in Health Neuroscience 

 Structural and functional brain imaging methods have revolutionized the questions that 

health psychologists can ask while helping reveal how the body and mind, physical and mental 

health can impact each other via the brain. Health neuroscience informs health psychology and 

behavioral medicine research by testing the interplay between environmental, behavioral, 
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psychological, and neurobiological processes as they unfold across life. Guided by themes and 

questions in health psychology, health neuroscience draws upon diverse fields such as cognitive, 

social affective, developmental, and clinical psychology and neuroscience, psychophysiology, 

psychoneuroimmunology, psychoneuroendocrinology, epidemiology, public health, and 

population neuroscience. However, neuroimaging techniques—and especially the quantitative 

and computational approaches to analyze brain imaging data—continue to develop. Although 

there are several measurement, analysis, and inference challenges that health neuroscientists 

face, as described throughout this chapter, the rapid and active development of better methods, 

measures, and modeling techniques promise that some of these issues may become less 

problematic. We close by foreshadowing future directions for health neuroscience. 

The Promise of Health Neuroscience 

Although still in its infancy, health neuroscience holds much potential for not only 

building a better understanding of brain function and structure in physical health and disease but 

also for guiding efforts to improve public health and individual wellbeing. Neuroscience more 

generally is moving towards a systems-level approach that models the brain as a dynamic 

network and set of subnetworks from which the mind and behavior can emerge and be 

constructed (Lindquist & Barrett, 2012). This perspective offers the insight that health more 

deeply helps create the mind, and that the mind (and more broadly, the world around us) shapes 

health for better or worse (Koban et al., 2021).  

On the horizon, new methods are being developed to expand the utility and inferential 

power of neuroimaging. Ongoing areas of active innovation include improvements and novel 

techniques for multivariate methods, the use of dynamic, non-static in-scanner tasks and stimuli, 

ways to better capture interpersonal dynamics from within the scanner, ways to better map brain 
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function onto brain structure through multi-modal multi-scale methods, as well as an array of 

other techniques for improving generalizability from the scanner to the lab and real life. Ongoing 

statistical and computational work also seeks to tackle the unique quantitative challenges that 

brain data present (e.g., big data, high interdependencies), especially when considering temporal 

dynamics, network structures, and longitudinal effects.  

 Given the scale of questions and challenges ahead, health neuroscience should 

increasingly capitalize on its interdisciplinary nature to foster collaborations, open science, and 

team science approaches as already exemplified by the Human Connectome Project (HCP) and 

the Adolescent Brain Cognitive Development (ABCD) Study. Health psychology and 

neuroscience most typically examine cross-sectional individual differences—but we need a 

deeper understanding of the intra-individual dynamic interplay between health, the brain, and 

psychology across states and development. Large multi-site studies for health neuroscience are 

critical for increasing the sample size and scope of questions, generalizability, and reliability of 

effect estimates. However, to build a programmatic understanding of the brain as a predictor, 

outcome, and mediator, it is important that health neuroscience not leave behind the much-

needed precision of experimentation and randomized control trials that can further disentangle 

pathways by which the brain is central for health and disease.  
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Figure. In a health neuroscience framework, the brain can be conceptualized as a predictor, 

mediator, or outcome of interest. Domains of variables derived from structural and functional 

neuroimaging methods include measures of brain morphology, connectivity, neurochemistry, and 

activity that can be used as predictor, mediator, or outcome metrics. Such metrics are interpreted 

within a given context, including historical, cultural, environmental, and social contexts that vary 

across the lifespan and across health and disease states. Factors of interest that can influence the 

brain (as an outcome) and can be influenced by the brain (as a predictor) include health 

behaviors, affective states, interoceptive processes, and aspects of systemic physiology, among 

other phenomena of interest in health psychology.  
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